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|. Pure compromise dynamics



The compromise process

® Opinion measured by a continuum variable

A<z <A

|. Compromise: reached by pairwise interactions
(21, 75) — T1+ T2 X1+ T2
b 2 2
2. Conviction: restricted interaction range

e o —~ o o

o o —> _8

‘$1 —1'2‘ <1

® Minimal, one parameter model

® Mimics competition between compromise and

conviction R Axelrod, | Conf. Res. 41,203 (1997)
G. Deffuant, G Weisbuch et al, Adv. Comp. Sys 3, 87 (2000)



Problem set-up

Given uniform initial (un-normalized) distribution

Py(z) 1 |z < A
’ ozl > A 1‘ ‘
Find final distribution ~A A
Py(x) =7

Multitude of final steady states ‘ ‘
—A A

E m; 0(x — x;) @ — a5 > 1

Dynamics selects one (determmlstlcally')

Multiple localized clusters



Further details

Dynamic treatment

Each individual interacts once per unit time
Random interactions

Two interacting individuals are chosen randomly

Infinite particle limit is implicitly assumed

N — o0

Process is galilean invariant = — z + x

Set average opinion to zero (z) =0



Numerical methods, kinetic theory

® Same master equation, restricted integration

6P (2, 1) //d:z:ldsz x1,t)P(x2,1) {5( a _5332) —5(:13—x1}

1 — 0| < 1

DDlrect Monte Carlo simulation of stochastic process

[A Numerical integration of rate equations

P
|
P e 1




Two Conservation Laws

® Jotal population is conserved

A
/ dr P(x) = 2A

—A
® Average opinion is conserved

/_idma:P(az):O



Rise and fall of central party

0< A <1.871 1.871 < A < 2.724

i R JL 041

Central party may or may not exist!




Resurrection of central party

2.724 < A < 4.079 4.079 < A < 4.956

1

Parties may or may not be equal in size



Emergence of extremists

|

Tiny fringe parties (m~10-3)



Bifurcations and Patterns

10
major
central
5 minor




Self-similar structure, universality

Periodic sequence of bifurcations_

|. Nucleation of minor cluster branch

2. Nucleation of major cluster brunch

X0

3. Nucleation of central cluster
45

Alternating major-minor pattern_ |

0

Clusters are equally spaced

Period L gives major cluster mass, separation

2(A) = 2(A) + L é z.@




How many political parties?
0.2

015 Israel

Ukraine

frequency
o

0.05

0 5 10 15 20
number of parties
eData: CIA world factbook 2002

* |20 countries with multi-party parliaments
* Average=5.8; Standard deviation=2.9



Cluster mass

® Masses are periodic
m(A)=m(A+L) .,
® Major mass 1]

M — L =2.155 o2 |

® Minor mass m 107

m — 3 x 1074

Why are the minor clusters so small?

gaps!




Scaling near bifurcation points

® Minor mass vanishes 18_3
T ~ (A — Ac)a 10—4

-5

® Universal exponent m 10
10

107

3 typel .

o 4 type 3 e
107

L-2 is the small parameter
explains small saturation mass



Consensus dynamics

* Integrable for A < 1/2
(2?(t)) = (2*(0)) ™

* Final state: localized
Po(x) =2A0(x)

* Rate equations in Fourier space
Py(k) + P(k) = P*(k/2)

* Self-similar collapse dynamics

P(2) x (1+z2)_2 2 =x/4/(x?)

The Inelastic Maxwell Model, EB & PL Krapivsky, Lecture Notes in Physics 624, 65 (2003)



Heuristic derivation of exponent

* Perturbation theory A =1 +¢ |
e Major cluster z(00) =0
* Minor cluster z(co) = +(1+ €¢/2) A J\ A

-1-¢ = 1 1+¢

® Rate of transfer from minor cluster to major cluster

dm _
T o M —> moe~cee !

dt
® Process stops when

xwe_tf/zwe

® Final mass of minor cluster

m(oo) ~ m(ty) ~ € a=3



Pattern selection

® |inear stability analysis

. 8 k2
o t(kx+wt) _ T dn 2 o
P—1xe —  w(k) . sin o ksmk 2
® Fastest growing mode w
dw 2T
— = L =—=2.2515
dk k k
® Traveling wave (FKPP saddle point analysis)
dw  Im(w) 27
dk — Im(k) k %
L

Patterns induced by wave propagation from boundary
However, emerging period is different

2.0375 < L < 2.2515
Pattern selection is intrinsically nonlinear



Discrete opinions

: P
e Compromise process 2| 11

|
[ P, P, Phb P, P, P
(n—1,n+1) — (n,n) Py+P +P=1

N

e Master equation
dP,

e 2P, _1Pyy1 — Pp(Pr—2 + Pyy2) 121 /
o Simplest example: 6 states N\
‘ l

e Symmetry + normalization:

1/2 L P,
e [wo-dimensional problem

Initial condition determines final state

Isolated fixed points, lines of fixed points



Discrete opinions

30

Dissipative system, volume contracts

Energy (Lyapunov) function exists BF e

X 0»......:..........:.....:.....

No cycles or strange attractors

-10

Uniform state is unstable (Cahn-Hilliard) s

=30 -

Discrete case yields useful insights



Pattern selection

® |inear stability analysis
P —1 o etfetwt) L ap(k) = 4cosk — 4 cos 2k — 2

® Fastest growing mode

dw 27T
= [ =20
dk k 0
® Traveling wave (FKPP saddle point analysis)
dw  Im(w) 27
R — L =—=5.31
dk — Im(k) k

Again, linear stability gives useful upper and lower bounds L/ L\/\/V_

5.3l < L <6 while  Lgelect = 5.67

Pattern selection is intrinsically nonlinear



|. Conclusions

® Clusters form via bifurcations

® Periodic structure

® Alternating major-minor pattern

® Central party does not always exist
® Power-law behavior near transitions

® Nonlinear pattern selection



|. Outlook

e Pattern selection criteria

o Gaps

e Role of initial conditions, classification

e Role of spatial dimension, correlations

e Disorder, inhomogeneities

e Tiling/Packing in 2D

e Discord dynamics (seceder model, Halpin-Heally 03)

Many open questions



| 1. Noisy compromise dynamics



Diffusion (noise)

* Diffusion: Individuals change opinion spontaneously

D
TL—>7”L::1

90 or _0—@

* Adds noise (“‘temperature’)
* Linear process: no interaction
* Mimics unstable, varying opinion

e Influence of environment, news, editorials, events



Rate equations

e Compromise: reached through pairwise interactions
(n—1,n+1) — (n,n)

e Conserved quantities: total population, average opinion

e Probability distribution P,(t)

e Kinetic theory: nonlinear rate equations

dFPy,
W — 2Pn—1Pn—|—1 —Pn(Pn_Q _l_Pn—|—2) _I_D(P’n,—l +PTL-|-1 o 2Pn)

[ IDirect Monte Carlo simulations of stochastic process

[A Numerical integration of rate equations



Single-party dynamics
e Initial condition: large isolated party

Pn(()) — m(dmO -+ 571,,—1)

e Steady-state: compromise and diffusion balance
DPn — n—an—I—l

e Core of party: localized to a few opinion states
Phb=m Pi=D  P,=Dm""

e Compromise negligible for n>2

Party has a well defined core



The tail

e Diffusion dominates outside the core

dP,
W:D(Pn—1+Pn+1_2Pn) P<<D

* Standard problem of diffusion with source

P, ~m 1 (nt1/?)
e Tail mass
My ~ m ™ t1/?

* Party dissolves when

Misqg ~m — T~ m?

Party lifetime grows dramatically with its size



Core versus tail

m = 10°

| T | L] 1 ' | " I
I ' T 1 ' I o \

10T [@—© simulation| %
* theory T

— m=10% t=10°

— m=10" t=10"

— m=10°,t=10°| |

10"

n ‘ nt /2

Party height=m | Self-similar shape
Party depth~mr Gaussian tail



Qualitative features

* EXiIsts In a quasi-steady state
* Tight core localized to a few sites

 Random opinion changes of members do not
affect party position

 Party lifetime grows very fast with size
» Ultimate fate of a party: demise
* [ts remnant: a diffusive cloud

* Depth inversely proportional to size, the larger
the party the more stable



Iwo party dynamics =

m<

[
* |nitial condition: two large isolated parties \' '|

Pn(o) — N> (5n,0 + 577,,—1) + m < (5n,l + 5n,l—|—1)

* Interaction between parties mediated by diffusion

O:Pn—l_l_Pn—l—l_ZPn

* Boundary conditions set by parties depths

1 1
Py = — P=—
m- m< P

* Steady state: linear profile

1 T~ l —

pnzlg(l 1)3 B



Merger

* Steady flux from small party to larger one p
1 1 1 1
J~ = ~
. l <m< m>> [m< J
* Merger time s
1~ < lm2< e
J J =—DP,

* Lifetime grows with separation (“'niche”)
e Outcome of interaction is deterministic

* Larger party position remains fixed throughout
merger process

Small party absorbed by larger one



Merger: numerical results
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Multiple party dynamics

e Initial condition: large isolated party
P,,(0) = randomly chosen number in [1 —€: 1 + €]

e Linear stability analysis

n
e Growth rate of perturbations /_k\’f(?

AMk) = (4cosk —4cos2k —2) — 2D (1 — cos 2k)

e Long wavelength perturbations unstable
k < ko coskg = D/2
P=1 stable only for strong diffusion D>D_=2



Strong noise (D>D.)
* Regardless of initial conditions

Py — (Pr(0))

e Relaxation time

N\~ (D.—Dk* = 71~ (D—-D,)"*

No parties, disorganized political system



Weak noise (D<D,): Coarsening

* Smaller parties merge into large parties
* Party size grows indefinitely
* Assume a self-similar process, size scale m
* Conservation of populations implies separation
[ ~m
* Use merger time to estimate size scale
t ~Ilm* ~m?’ — m ~ /3

e Self-similar size distribution
P, ~t Y3F(mt=/3)

Lifshitz-Slyozov coarsening



Coarsening: numerical results

Wl

1()2_ ™TTTTT

- | = = slope=1/3

3 5
10 t 10 10

*Parties are static throughout process
*A small party with a large niche may still

outlast a larger neighbor!



Three scenarios

early intermediate late



ll. Conclusions

* |solated parties
- Tight, immobile core and diffusive talil
- Lifetime grows fast with size

* Interaction between two parties
-Large party grows at expense of small one
- Deterministic outcome, steady flux
* Multiple parties
- Strong noise: disorganized political system, no parties

- Weak noise: parties form, coarsening mosaic
-No noise: pattern formation
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“| can calculate the motions of heavenly boclies,

but not the madness of Pcol:)le.”

Isaac Newton



